
 

 

Abstract—A novel relaxation oscillator based on integrating 

the diode-switched currents and Schmitt trigger is presented. It 

is derived from a known circuit with operational amplifiers 

where these active elements were replaced by current 

conveyors. The circuit employs only grounded resistances and 

capacitance and is suitable for high frequency square and 

triangular signal generation. Its frequency can be linearly and 

accurately controlled by voltage that is applied to a high-

impedance input. Computer simulation with a model of a 

manufactured conveyor prototype verifies theoretical 

assumptions. 
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I. INTRODUCTION 

Square waveform generators with controllable frequency are 

widely used circuits in the fields of instrumentation and 

measurement. They serve as interfaces for signal processing 

from sensors [1], [2], [3], as they offer better 

electromagnetic interference immunity, lower sensitivity, 

and simpler structures compared to harmonic oscillators 

based on a linear positive feedback structure. Due to these 

advantages, many relaxation oscillators have been published 

recently [2] – [11]. The topology of relaxation oscillator 

usually consists of a Schmitt trigger and an integrator in a 

closed loop. Designers employed various active elements in 

these blocks. Initially mostly operational amplifiers were 

used, later operational transconductance amplifiers, current 

conveyors, current feedback operational amplifiers etc.  

Our paper presents a novel square/triangular wave 

generator with current conveyors, only grounded resistances 

and integration capacitance. This makes the circuit attractive 

for integrated implementation. High-impedance voltage 

input is used to accurate, linear, and wideband control of 

oscillation frequency. The generator is a modification of an 

opamp-based circuit where the active elements were 

appropriately replaced by current conveyors. Thanks to 

conveyors the circuit can operate with wider bandwidth, 

higher slew rate, better accuracy, and higher dynamic range 

with low supply voltage.  
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II. GENERATOR CIRCUIT 

A. Original Circuit with Opamps 

The generator designed in this paper is based on the circuit 

shown in Fig. 1. 
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Fig. 1.  Generator with operational amplifiers and transistors 

 

It is a well known structure of relaxation oscillator where 

the capacitor C is periodically charged and discharged by a 

constant current that alternates its polarity. Magnitude of this 

current is directly proportional to the control voltage VC and 

this current is generated in the left part of the circuit (from 

the capacitor C). The control voltage regulates the speed of 

charging the capacitor and also the frequency of the 

generated output signal. If it is valid R3 = R4, the collector 

currents of the transistors T2 and T3 are equal and are 

flowing down in the schematic (providing that the control 

voltage is positive). The diodes D1 to D4 ensure switching 

the T2 and T3 collector currents in the following way: if the 

hysteresis comparator output is low, D1 is open and drains 

the entire T2 collector current into the comparator output. 

Thus no current flows through D2. In this period C is being 

discharged by the T3 collector current via D3. If the capacitor 

voltage reaches negative threshold of the comparator, the 

output of comparator changes to high. In this case D2 leads 

the entire T2 collector current into the capacitor which is 

being charged until its voltage reaches the positive threshold 

of the comparator. D4 is open and no current flows through 

D3. The voltage at vTR output has a triangular waveform and 

voltage at vSQ output a square waveform. 
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B. Current Conveyors Employed 

Before we introduce the novel generator circuit, we present 

the current conveyors CCII+/- and UCC [12] that are 

employed in the circuit solution. Their symbols and terminal 

specification are shown in Fig. 2. The following relations are 

valid for the voltages and currents in Fig. 1: 

 

UCC: 

IY1+ = IY2- = IY3+ = 0, VX = VY1+ – VY2- + VY3+, IZ1+ = –IZ1- = 

IZ2+ = –IZ2- = IX. 

 

CCII+/–: 

IY = 0, VX = VY, IZ+ = –IZ- = IX. 

 

These two conveyors are included in the integrated circuit 

UCC-N1B [13] whose samples were manufactured in the 

ON Semiconductor Design Centre Brno, Czech Republic. 

The proposed generator can be realized with only one 

UCC-N1B circuit. 
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Fig. 2.  UCC and CCII+/- symbols and their terminal specification 

 

C. Oscillator with Current Conveyors 

The proposed square/triangular wave oscillator is shown in 

Fig. 3. 

As apparent, the transistor current source was replaced by 

CCII+/- which converts the input control voltage VC to 

currents with opposite directions at Z+ and Z- outputs. The 

method of switching currents by the four diodes remained 

unchanged and works in the same way as described above. 
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Fig. 3. Square/triangular wave generator  

 

 

 

The slight difference is that cathode of D1 and anode of 

D4 are connected to current output of hysteresis comparator 

(Schmitt trigger) [11] which consists of UCC, R1, and R2. 

The Z1- Y2- connection provides a positive feedback in the 

comparator. It is necessary to select R2 > R1 to ensure the 

positive feedback with a loop-gain higher than unity. The 

input threshold levels of the comparator are given as 

 

 12maxXZTLTH RRIVV  , (1) 

 

where IXZmax is the lower value of the two currents IXmax and 

IZmax which are the maximum currents that can be supplied 

by UCC at pins X and Z1- respectively. The Schmitt trigger 

can be also designed using simple CCIIs as it was shown in 

[14], however, two active elements have to be used. 

The triangular output voltage (vTR) is taken directly from 

the capacitor C. Two voltage outputs (vSQ1 and vSQ2) offer 

mutually inverted square waveforms. These outputs can be 

loaded only with very high impedance, otherwise a voltage 

buffer must be connected. A current output (iSQ) is also 

available, which can be loaded by arbitrary impedance 

without affecting the circuit performance. 

The frequency of the generated signal is 
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III. COMPUTER SIMULATION 

While computing numerical parameters of the circuit and 

performing its simulations we will consider the real 

parameters of the UCC-N1B prototype. The maximum X 

and Z terminal currents of the conveyor are the same, 

namely IXmax = IZmax = IXZmax = 0.7 mA. The resistance R2 

will be chosen 1 k which results in the amplitude of the 

output voltage vSQ1 of 0.7 V. If the resistance R1 = 500 , 

the Schmitt trigger threshold voltage is according to (1) VTH 

= –VTL = 0.35 V. The resistance R was chosen 1 k and 

diodes BAT68 Schottky. 

Figs. 4 a) and b) show the waveforms of the generator 

with VC = 0.1 V, C = 5 nF, (theoretical frequency 

fG = 14.3 kHz), and VC = 0.7 V, C = 200 pF, (theoretical 

frequency fG = 2.5 MHz), respectively. 

Fig. 4 a) shows the behaviour of the circuit at low 

frequency. Here the influence of conveyor non-idealities is 

very small and the waveforms are almost ideal. Distortion is 

apparent in Fig. 4 b) where the simulated frequency is about 

1.5 MHz, which differs from the theoretical value, but the 

waveforms still maintain their shape. 

Dependency of frequency on control voltage for three 

values of capacitance C is demonstrated in Fig. 5. 

The simulated frequency corresponds very well with the 

ideal one computed by (2) at frequencies below 100 kHz. 

Above this frequency the error increases but the dependency 

is still nearly linear. 
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b) 

Fig. 4. Simulated waveforms of the generator; a) VC = 0.1 V, C = 5 nF; b) 

VC = 0.7 V, C = 200 pF 

 

IV. CONCLUSION 

Relaxation oscillator with two current conveyors according 

to a classic circuit with operational amplifiers has been 

designed. It employs only grounded passive elements, which 

is advantageous for integrated implementation. The circuit 

features with voltage triangular-wave output and both 

voltage and current square-wave output. 

The generated frequency is directly proportional to the 

control voltage and the relation for evaluating the generated 

frequency depending on the control voltage and element 

values has been given. The circuit functionality has been 

verified by computer simulations with a PSpice model of 

manufactured sample of universal current conveyor 

UCC-N1B. Thanks to the high-speed conveyors and diodes 

the circuit is suitable for generating high frequency signals. 

The generated frequency agrees with theoretical assumptions 

up to about 100 kHz and linearity of the frequency setting is 

maintained up to units of megahertz. The future work in this 

area will continue with practical implementation of the 

proposed circuit and modifications improving the accuracy 

of the generated frequency according to the control voltage. 
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c) 

Fig. 5. Generated frequency vs control voltage for three capacitances a) 

C = 5 nF, b) C = 1 nF, c) C = 200 pF 
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