Identification of Linear Time Invariant Systems
Using FMCW Signals and Stretch Processing Receivers
Stephan Häfner and Reiner Thomä

Abstract—The paper deals with the identification of linear time invariant (LTI) systems by a special observer. An observer emitting an frequency modulated continuous wave (FMCW) signal and having a stretch processor as receiver will be considered for system identification. A thorough derivation of the gathered baseband signal for arbitrary LTI systems will be given. It is shown, that the received signal is approximately given by the transfer function of the LTI system over the frequency sweep of the FMCW signal. The proof relies on an infinite large time-bandwidth product. Monte–Carlo simulations are conducted to verify the approximation and to quantify its accuracy and remaining errors. The findings are important for e.g. calibration or derivation of a device model in FMCW radar applications.

Keywords—FMCW signal, LTI system, stretch processing receiver, system identification.

I. INTRODUCTION

System identification is the task of inferring a model of a physical system from observed input-output data. This task occurs in many areas of engineering, as e.g. in radar and channel sounding, and also in control engineering or characterisation of hardware components like filters, transmission lines, antennas etc. In many applications, the physical system under identification is modelled as linear and time invariant (LTI) system. The system identification is accomplished by an observer, which excites the physical system with a known signal (input) and gathers the response (output). Real-time sampling of the response signal at baseband requires analog-to-digital converters (ADCs) with sampling rates of at least twice the signal bandwidth. In case of a large signal bandwidth (e.g. several GHz) appropriate digitisers are costly. However, if the system under identification is time-invariant or slowly time-varying, real-time acquisition is not necessary. Periodic sub-sampling can be employed in that case, such that the digitiser requirements are relaxed to the cost of a longer measurement duration. In this paper, an observer which emits an frequency modulated continuous wave (FMCW) signal and having a stretch processing receiver architecture is considered as observer. Stretch processing receivers are matched-filter realisations for FMCW signals with a large time-bandwidth product. Advantage of such a receiver is, that it can be realised with a moderate hardware effort and ADCs with a low sampling rate can be employed. Figure 1 shows a block diagram of the considered observer. For a delay and damping LTI system, the baseband signal is known from literature. However, to the best of the authors knowledge, a thorough derivation of the baseband signal for an arbitrary LTI system is not given in literature. Knowledge of the baseband signal for arbitrary LTI systems is important to derive a device model of the observer for high-resolution parameter estimation or to calibrate the observer itself. In this paper, the baseband signal will be analytically derived under several assumptions, and the respective limitations and occurring errors will be elaborated. The finding has been recently used by the authors to develop a device model for an FMCW radar, whereas no proof has been given.

Under narrowband assumption, an FMCW signal in the complex passband domain can be represented as

\[s(t) = a \cdot \exp \left\{ \frac{B}{T^2} t^2 + 2\pi f_c t \right\} \quad , \quad |t| \leq \frac{T}{2} \]

Variables \(T \), \(B \) and \(f_c \) denote the sweep time, swept bandwidth and the centre frequency, respectively. The signal is transmitted over a LTI system, which is described by its respective time-domain representation \(g(t) \) and frequency-domain representation \(G(f) \). In Section it will be shown, that the output of the LTI system for large

\[g(t) \]

\[(\cdot) \]

\[\text{Vol. 8, No. 2 (2019)} \]

\[\text{International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems} \]

\[\text{Stephan Häfner and Reiner Thomä} \]

\[\text{Manuscript received March 10, 2019; revised July 3, 2019.} \]

\[\text{Stephan Häfner and Reiner Thomä are with the Electronic Measurements} \]

\[\text{and Signal Processing Group at Technische Universität Ilmenau, Ilmenau,} \]

\[\text{98684 Germany (e-mail: (stephan.haefner, reiner.thoma@tu-ilmenau.de))}. \]

\[\text{Stephan Häfner is funded by the Deutsche Forschungsgemeinschaft under Grant no. 317632307.} \]
time-bandwidth products \((T \cdot B >> 1)\) is
\[
s(t) * g(t) \approx s(t) \cdot G \left(\frac{B}{T} t + f_c \right) .
\] (2)

The output signal \(x(t)\) of the stretch processing receiver is given by
\[
x(t) = \overline{s(t)} \cdot [s(t) * g(t)] ,
\] (3)

whereas \(\overline{\bullet}\) denotes the complex conjugate operator. Plugging (2) in (3) yields an approximation of the baseband signal
\[
x(t) \approx \overline{s(t)} \cdot s(t) \cdot G \left(\frac{B}{T} t + f_c \right) = a^2 \cdot G \left(\frac{B}{T} t + f_c \right) .
\] (4)

Thus, the baseband signal in time domain is proportional to the transfer function of the LTI system over the frequency sweep of the FMCW signal. Because the time-bandwidth product cannot be infinite in practice, some errors remain and the relation is only approximately true. In Section III the accuracy of the approximation and the introduced errors will be addressed by simulations.

A. Limitations

Application of a stretch processing receiver has some limitations and constraints regarding the LTI system under identification.

The transmit signal undergoes a delay while being transmitted over the LTI system. A delayed receive signal causes a loss in resolution due to the corresponding loss in bandwidth, as shown in [15]. The resolution is not degraded, if the delay is much less than the sweep time. Restate the transfer function of the LTI system in terms of magnitude and phase
\[
G(f) = |G(f)| \cdot \exp \{ j\varphi(f) \} .
\] (5)

If the magnitude of the group delay of the LTI system fulfills
\[
| - \frac{1}{2\pi} \frac{\partial \varphi(f)}{\partial f} | << T ,
\] (6)

the resolution is not degraded due to the transmission delay. Hence, a large sweep time or equivalently a large measurement duration is required, which is a drawback of this kind of observer systems.

In practical implementations of the stretch processing receiver, a low-pass filter is present at the output of the multiplexer of the stretch processor [5]. This low-pass filter has no influence on approximation (4) and can be neglected in the mathematical derivations, if the impulse response duration \(\sigma_{\text{LTI}}\) of the LTI system is related to the cut-off frequency \(f_{\text{cut-off}}\) of the low-pass filter by
\[
\sigma_{\text{LTI}} \leq \frac{T}{B} f_{\text{cut-off}} .
\] (7)

Considering the ADC sampling rate \(f_s\), which has to fulfil \(f_s \geq 2 f_{\text{cut-off}}\) according to Nyquist’s sampling theorem, the maximum measurable impulse response duration is
\[
\sigma_{\text{LTI}} \leq \frac{T}{B} f_s / 2 .
\] (8)

II. PROOF OF APPROXIMATION [2]

The output of a LTI system excited with the FMCW signal in (1) is given by
\[
s(t) * g(t) = \int_{-\infty}^{\infty} S(f) \cdot G(f) \cdot \exp \{ j2\pi f t \} df .
\] (9)

The spectrum \(S(f)\) of an FMCW signal is [12]
\[
S(f) = \sqrt{\frac{a^2 T}{2B}} \exp \left\{ -\frac{B}{2} \left(f - f_c \right)^2 \right\} \left[Z(q_1) + Z(q_2) \right] .
\] (10)

with
\[
q_1 = \sqrt{\frac{T}{2B}} \left[B + 2 (f - f_c) \right] \quad (11a)
\]
\[
q_2 = \sqrt{\frac{T}{2B}} \left[B - 2 (f - f_c) \right] .
\] (11b)

Function \(Z(q)\) denotes the complex Fresnel integral [16]
\[
Z(q) = \int_{0}^{\infty} \exp \left\{ \frac{\pi q^2}{2} \right\} dx .
\] (12)

For large time-bandwidth products, the values of \(q_1\) and \(q_2\) tend to infinity, and magnitude and phase of \(Z(q_1) + Z(q_2)\) in the frequency range \([f_c - B/2, f_c + B/2]\) can be approximated as [12]
\[
\lim_{T \cdot B \to \infty} |Z(q_1) + Z(q_2)| = \sqrt{2} \quad (13a)
\]
\[
\lim_{T \cdot B \to \infty} \arg \{ Z(q_1) + Z(q_2) \} = \frac{\pi}{4} .
\] (13b)

Figure 2 shows magnitude and phase of the Fresnel integral sum \(Z(q_1) + Z(q_2)\) for different sweep times and bandwidths over the frequency range from –6 GHz to 6 GHz and a centre frequency of 0 Hz. Ripples at the band edges (denoted as Fresnel oscillations) are present, which rise due to the waveform uncertainty principle (Gabor’s uncertainty principle) [12]. Hence, the Fresnel oscillations reduce, if the sweep time increases. An increase of the bandwidth does not reduce the Fresnel oscillations at the band edges, but the oscillations in the band middle decrease. Because the approximations are only valid on the interval \([f_c - B/2, f_c + B/2]\) and the spectrum magnitude rapidly decreases outside of this interval, the magnitude can be approximated by a rectangular function. Plugging the approximations into (10) yields the signal spectrum for large time-bandwidth products
\[
S(f) \approx \sqrt{\frac{a^2 T}{B}} \exp \left\{ -\frac{B}{2} \left(f - f_c \right)^2 + \frac{\pi}{4} \right\} \text{rect} \left(\frac{f - f_c}{B} \right) .
\] (14)

Plugging the approximative signal spectrum into (9) yields
\[
s(t) * g(t) \approx \sqrt{\frac{a^2 T}{B}} \cdot \exp \left\{ \frac{\pi}{4} \right\} \cdot \int_{f_c - B/2}^{f_c + B/2} G(f) \exp \left\{ -\frac{B}{2} \left(f - f_c \right)^2 \right\} \exp \{ j2\pi f t \} df .
\] (15)

Thus, the convolution result is given by the integral of an oscillating function with envelope \(G(f)\).
The principle of stationary phase [12] will be applied to approximate the integral in (15). Assuming the oscillating function as rapidly varying and the envelope as sufficiently smooth, contributions of the integrand cancel approximately out under the integral. Hence, dominant contributions occur only in the regions of minimal oscillation (stationary points), and at the end points of the integration interval. Under the first order approximation, the contributions of the end points become negligible in comparison to contribution of the stationary points [17]. For sake of convenience, the phase term of the integrand is rewritten as

\[\Psi(f) = 2\pi f \left(t + \frac{T}{B} f_c \right) - \pi \frac{T}{B} f^2 - \pi \frac{T}{B} f_c^2. \]
\[(16) \]

The second order Taylor series expansion of the phase term, evaluated at point \(f_0 \), gives

\[\Psi(f) \approx \Psi(f_0) + \dot{\Psi}(f_0)(f - f_0) + \frac{1}{2} \ddot{\Psi}(f_0)(f - f_0)^2, \]
\[(17) \]

with

\[\dot{\Psi}(f) = \frac{d\Psi(f)}{df} = 2\pi \left(t + \frac{T}{B} f_c \right) - 2\pi \frac{T}{B} f, \]
\[(18a) \]

\[\ddot{\Psi}(f) = \frac{d^2\Psi(f)}{df^2} = -2\pi \frac{T}{B}. \]
\[(18b) \]

According to the stationary phase principle, the evaluation point \(f_0 \) is selected to be the point of vanishing first order derivative \(\dot{\Psi}(f_0) = 0 \), because the oscillations are minimal their. The only stationary point is at \(f_0 = \frac{B}{T} t + f_c \). Plugging the Taylor series expansion into (15) and noting that the integral is only significant in the \(\epsilon \) vicinity of the stationary point, yields

\[s(t) \ast g(t) \approx \sqrt{\frac{g^2 T}{B}} \exp \left\{ \frac{\pi}{4} \right\} \exp \left\{ j\Psi(f_0) \right\} \cdot \int_{f_0 - \epsilon}^{f_0 + \epsilon} G(f) \exp \left\{ \frac{1}{2} j\dot{\Psi}(f_0)(f - f_0)^2 \right\} df. \]
\[(19) \]

Assuming the envelope as slowly varying and \(\dot{\Psi}(f_0)(f - f_0)^2 \) as sufficiently large, \(G(f) \) contributes to the integral only in the vicinity of the stationary point \(f_0 \). Hence, \(G(f) \) can be approximated by \(G(f_0) \), which yields

\[s(t) \ast g(t) \approx \sqrt{\frac{g^2 T}{B}} \exp \left\{ \frac{\pi}{4} \right\} \exp \left\{ j\Psi(f_0) \right\} G \left(\frac{B}{T} t + f_c \right) \cdot \int_{f_0 - \epsilon}^{f_0 + \epsilon} \exp \left\{ \frac{1}{2} j\dot{\Psi}(f_0)(f - f_0)^2 \right\} df. \]
\[(20) \]

Since the main contributions to the integral are concentrated around the stationary point, a small error will occur by
integrating over the infinite domain. Considering furthermore
the substitution $\xi^2 = \frac{1}{2} \Psi(f_0)(f - f_0)^2$ and the complex
Fresnel integral over the infinite domain [16], the integral in
(20) can be approximated as
\[
\int_{f_0-\varepsilon}^{f_0+\varepsilon} \exp \left\{ \frac{1}{2} \Psi(f_0)(f - f_0)^2 \right\} \, df \\
\approx \int_{-\infty}^{\infty} \exp \left\{ \frac{1}{2} \Psi(f_0)(f - f_0)^2 \right\} \, df \\
= \left[\frac{2\pi}{\Psi(f_0)} \right] \cdot \int_{\xi=-\infty}^{\xi=\infty} \exp \left\{ j\xi^2 \right\} \, d\xi \\
= \left[\frac{2\pi}{\Psi(f_0)} \right] \cdot \exp \left\{ \frac{\pi}{4} \right\} \cdot \sqrt{\frac{B}{T}} \cdot \exp \left\{ -\frac{\pi}{4} \right\} .
\]
Plugging this result into (20) yields the approximative output
signal in time domain
\[
s(t) \ast g(t) \approx \sqrt{\frac{\alpha T^2}{B}} \cdot \exp \left\{ \frac{j\pi}{4} \right\} \cdot \exp \left\{ j\Psi(f_0) \right\} \cdot G \left(\frac{B}{T} \cdot t + f_c \right) \\
\cdot \sqrt{\frac{B}{T}} \cdot \exp \left\{ -\frac{\pi}{4} \right\} \\
= a \cdot \exp \left\{ j\Psi(f_0) \right\} \cdot G \left(\frac{B}{T} \cdot t + f_c \right) \\
= a \cdot \exp \left\{ j \cdot \left(\frac{B}{T} \right) t^2 + 2\pi f_c t \right\} \cdot G \left(\frac{B}{T} \cdot t + f_c \right) \\
= s(t) \cdot G \left(\frac{B}{T} \cdot t + f_c \right),
\]
which has been stated in (2). III. VERIFICATION AND ERROR ANALYSIS

Basically, the approximations in Section II introduce errors.
Under first order approximation, these errors can be assumed
as additive. Hence, the output of the stretch processor in the
noiseless case can be represented as
\[
x(t) = a^2 \cdot G \left(\frac{B}{T} \cdot t + f_c \right) + \varepsilon(t) ,
\]
with $\varepsilon(t)$ accounting for the approximation errors. According
to the assumption of a large time-bandwidth product, the errors
should fulfil
\[
\lim_{T \cdot B \to \infty} \varepsilon(t) = 0 .
\]
Monte–Carlo simulations with varying system settings as
e.g. varying sweep time or bandwidth will be carried out to verify (24). Randomly generated LTI systems are considered
for the simulation. A LTI system can be represented in
frequency domain by its corresponding rational form [3]
\[
G(s) = j2\pi f = k \prod_{r=1}^{R} \frac{(s - z_r)}{(s - p_r)} ,
\]
with the zeros $z_r \in \mathbb{C}$ and poles $p_r \in \mathbb{C}$. For sake of
convenience, the gain factor k is set to $k = 1$. In each Monte–
Carlo run, the zeros and poles are uniformly and pairwise
complex conjugately generated in the range from 50 kHz to
100 kHz. The range is chosen in order to have a low group
delay for small numbers of poles and zeros. The amplitude
of the transmit signal is chosen as $a = 1$ and the number of
Monte–Carlo runs is set to $M = 1000$. As figure of merit, the
normalised root mean-square error (RMSE) is calculated
\[
\sqrt{\frac{1}{NM} \sum_{m=1}^{M} \sum_{n=1}^{N} \left| x_m(n T_0) - G_m \left(\frac{B}{T} \cdot t_0 + f_c \right) \right|^2} ,
\]
with G_m the generated LTI system and x_m the calculated
baseband signal for the m-th Monte–Carlo run. The baseband
signal is calculated by considering the system structure given
in Fig. 1. The sampling time is $t_0 = 100$ ns and the centre
frequency is $f_c = 0$ Hz. Because the number of samples N
varies over the sweep time T according to relation $T = N t_0$,
the RMSE has been normalised.

First, simulations for various sweep times and bandwidths,
and a fixed number of poles and zeros $Z = P = 4$ are
considered. The RMSE curves are shown in Fig. 3, indicating
a decreased error if the time or bandwidth increases. Hence,
the error decreases with an enlarging time-bandwidth product,
which indicates the correctness of (24).

Second, simulations for various sweep times and orders
(max. number of poles and zeros) of the LTI system are
considered, whereas the swept bandwidth was 1 MHz. An
increasing system order causes a higher group delay, which
decreases the resolution and hence increases the approximation
error. Furthermore, a higher order causes a transfer function
which is less smooth compared to the oscillations of the
FMCW signal. Hence, the stationary phase approximation
becomes less accurate and the approximation error increases.
The RMSE curves in Fig. 4 verify the stated relation between
group delay and approximation error.

Last, simulations with varying fractional bandwidth B/f_c
are conducted, whereas the centre frequency has been varied
and the bandwidth was fixed to 100 kHz. The RMSE curves are
depicted in Fig. 5 indicating a decreased error for small fractional
bandwidths (small bandwidth and high centre frequency). Because the spectral oscillations of the FMCW signal
are higher for large centre frequencies and the stimulated
part of the envelope of the LTI system becomes smoother
for small bandwidths, the approximations by the stationary
phase principle become more accurate for small fractional
bandwidths.

Summarised, the simulations verify approximation (4) and
limitation (9). Furthermore it was found, that the accuracy of
the baseband signal approximation improves, if the fractional
signal bandwidth reduces.

IV. CONCLUSION

Identification of linear time invariant systems by an observer
which emits an FMCW signal and has a stretch processing
receiver architecture has been considered. It has been theo-
retically proven under the assumption of an infinite time-
bandwidth product, that the received baseband signal is ap-
proximately proportional to the frequency response of the
LTI system. The accuracy of this approximation has been
addressed in Monte–Carlo simulations with varying sweep
time and bandwidth of the FMCW signal, and varying order
of the LTI system. The simulations verify the approximation and indicate, that the remaining approximation errors decrease if 1) the time-bandwidth product enlarges, 2) the group delay of the LTI system is much smaller than the sweep time or 3) the fractional bandwidth is small.

REFERENCES